m at h . N T ] 1 8 Ju n 20 07 NEWTON POLYGONS FOR TWISTED EXPONENTIAL SUMS AND POLYNOMIALS
نویسندگان
چکیده
We study the p-adic absolute value of the roots of the L-functions associated to certain twisted character sums, and additive character sums associated to polynomials P (x d), when P varies among the space of polynomial of fixed degree e over a finite field of characteristic p. For sufficiently large p, we determine in both cases generic Newton polygons for these L-functions, which is a lower bound for the Newton polygons, and the set of polynomials of degree e for which this generic polygon is attained. In the case of twisted sums, we show that the lower polygon defined in [1] is tight when p ≡ 1 [de], and that it is the actual Newton polygon for any degree e polynomial.
منابع مشابه
Newton Polygons for Twisted Exponential Sums
We study the p-adic absolute value of the roots of the L-functions associated to certain twisted character sums, and additive character sums associated to polynomials P (x d), when P varies among the space of polynomial of fixed degree e over a finite field of characteristic p. For sufficiently large p, we determine in both cases generic Newton polygons for these L-functions, which is a lower b...
متن کامل6 Newton Stratification for Polynomials : the Open Stratum
In this paper we consider the Newton polygons of L-functions coming from additive exponential sums associated to a polynomial over a finite field Fq. These polygons define a stratification of the space of polynomials of fixed degree. We determine the open stratum: we give the generic Newton polygon for polynomials of degree d ≥ 2 when the characteristic p is greater than 3d, and the Hasse polyn...
متن کاملNewton polygons for character sums and Poincaré series
In this paper, we precise the asymptotic behaviour of Newton polygons of L-functions associated to character sums, coming from certain n variable Laurent polynomials. In order to do this, we use the free sum on convex polytopes. This operation allows the determination of the limit of generic Newton polygons for the sum ∆ = ∆1 ⊕ ∆2 when we know the limit of generic Newton polygons for each facto...
متن کاملHodge-stickelberger Polygons for L-functions of Exponential Sums
Let Fq be a finite field of cardinality q and characteristic p. Let P (x) be any one-variable Laurent polynomial over Fq of degree (d1, d2) respectively and p d1d2. For any fixed s ≥ 1 coprime to p, we prove that the q-adic Newton polygon of the L-functions of exponential sums of P (xs) has a tight lower bound which we call Hodge-Stickelberger polygon, depending only on the d1, d2, s and the re...
متن کاملHODGE-STICKELBERGER POLYGONS FOR L-FUNCTIONS OF EXPONENTIAL SUMS OF P (x)
Let Fq be a finite field of cardinality q and characteristic p. Let P (x) be any one-variable Laurent polynomial over Fq of degree (d1, d2) respectively and p d1d2. For any fixed s ≥ 1 coprime to p, we prove that the q-adic Newton polygon of the L-functions of exponential sums of P (xs) has a tight lower bound which we call HodgeStickelberger polygon, depending only on the d1, d2, s and the res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007